Course Type	Course Code	Name of Course	L	Т	Р	Credit
DC	NCEC514	Structural Dynamics	3	1	0	4

Course Objective					
The course focuses on the behavior of structure under time-varying loading.					
Learning Outcomes					
Upon successful completion of this course, the students should be able to:					
 analyse the structural systems subjected to time-varying loading. 					
 deviation negativity basis by evaluation for earth evaluation and the same deviation while combined 					

• develop requisite basic knowledge for earthquake resistant design philosophy.

Unit No.	Topics to be Covered	Contact Hours	Learning Outcome	
1	Introduction to Dynamics: Vibrations and the nature of time dependent phenomena, inertia, dynamic equilibrium and mathematical models of physical systems; Energy storing and dissipation mechanisms.	7I ⊥ 3T	Concept of time-varying loading. Behaviour of structure under such loading.	
2	Dynamics of Single Degree of Freedom Systems: Undamped and damped, free and forced vibrations; Steady-state and transient response, impulse response. Harmonic response and applications to vibration isolation.	13L+4T	Modeling and analysis of SDOF systems.	
3	Response Spectra: Concept of Response spectrum, Tripartite Spectrum for analysis.	6L+2T	Concept of response spectra, design response spectra.	
4	Dynamics of Multi Degree of Freedom Systems: Modal Analysis; Eigenvalue problem; Mode Shape; Orthogonality of mode shape. Shear Building model.	10L+4T	Modeling and analysis of MDOF systems.	
5	Approximate Method of Analysis and Random Vibration: Approximate Methods for Vibration Analysis, Rayleigh quotient, Rayleigh Ritz method. Introduction to Random Vibration. Dynamic behaviour of continuous system.		Different approximate methods of analysis and response of structure under random vibration	
	Total Contact Hours	42 L+14 T		

Text Books:

- 1. Chopra, A. K. "Dynamics of Structures", PHI Learning.
- 2. Paz, M. "Structural Dynamics Theory and Computation", Springer.

Reference Books:

- 1. Clough, R. W. and Penzien., J., "Dynamics of Structures", 2nd edition, Mc-Graw Hill Book Company.
- 2. Craig, R. R., Jr. and Kurdila, A., "Fundamentals of Structural Dynamics", 2nd edition, John Wiley & Sons.